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Nitrogen reduction in our coastal ponds can be achieved by two general approaches:
• Top down approaches that focus on reducing the nitrogen load at its source by

lowering Fertilizer applications and treating wastewater to lower the nitrogen
content.

• Bottom up approaches that reduce the nitrogen in the system such as enhancing
tidal exchange removing the nitrogen to the ocean.

Shellfish are filter Feeders and they are a potential means of significant bottom up nitrogen
management. They pump water From the pond through their gills where they extract Food
particles. An adult oyster can pump and filter 20 to 50 gallons of pond water per day (Newell).
The particles they extract include microscopic p~i ~ankbn and other very small fragments of
plant material. These Food particles are “built” in the water column by conversion oF nutrients into
plant tissue- the more nutrients entering the system the more particles in the water. Shellfish can
be “picky” eaters and reject a substantial amount of what they filter. The rejected material is
released in small clusters of particles (pseudofeces or biodeposits) into the sediment at the bottom
of the pond. The food consumed builds shellfish tissues and provides for reproductive functions.

Shellfish remove nitrogen from the water column in two ways:
1. The Food eaten by the shellfish contains nutrients that are available in the water column

including nitrogen, phosphorus, carbon and numerous other chemicals. The shell and
tissues of shellfish include proteins and amino acids that contain nitrogen. When they are
harvested and removed From a pond, the nitrogen in their tissues goes with them. The
protein content in oyster tissues was estimated to be 6.1 to 8.4% (dry weight) by Walne
(1974). Protein is on the order oF 16% nitrogen (Millero, 1996) indicating a nitrogen
Fraction oil to 1 5% of the weight of the meat. Quahog tissue was reported to contain
about 2.7% nitrogen (Nixon, 1995). In another study, oyster tissue was estimated to
contain 1 .7% nitrogen (Rice, 1999). Based on this range of Figures, about 13 to 27
kilograms of nitrogen are removed for every 1000 kilogtoms of shellfish me~h~ested.
A simpler way to view it is that each adult oyster contains approximately 0.5 grams of
nitrogen in its tissues and shell.

2. The shellfish reject many more food particles than they eat and these also contain
nutrients. The biodeposits (pseudofeces and feces) are an even more important means of
nitrogen removal estimated to be seven times the weight of nitrogen contained In the
shellfish meat (Stephenson & Brown, 2006). At least 20% of the nitrogen contained in the
biodeposits is then removed from the system by denitrification (Newell, 2002). The
removal is caused by the action of denitrlFying bacteria that are active just below the
oxidized surface of the bottom where oxygen is depleted. These bacteria use the nitrogen
that is released From the biodeposiss by other brpç~4o~n processes For their energy and in
the process convert some of it to nitrogen gas that leaves the pond system. These figures
are oyster “lifetime” figures and For a typical 3 ysqr kftn~ ip hwyest imply an annual
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removal of nitrogen OF about 0.2 grams per animal from biodeposits only. Lab
experiments indicated that 500 oysters removed 0.2 kilos (0.4 grams per oyster) of
nitrogen per year in body weight and biodeposits (Kite-Powell, 2006). Over its 3 year
life, each oyster would remove 1 .2 grams of nitrogen from the pond water. Newell
(2004) estimated that an adult oyster (3 inch shell) can cause 0.75 grams of nitrogen
to be buried and denitrifled each year. Lesser amounts would be denitrified as the
young oysters grow to adult size and greater amounts for larger oysters.

A Role for Shellfish in Our Coastal Pond Water Quality:
The harvest of 3750 oysters is estimated to compensate for the nitrogen wastes From one
person in the watershed (Rheault, 2008). There are about 300 oysters of all ages and sizes
found in a square meter of high quality habitat in Lake Worth (Gambordella).

Assuming a similar population density could be achieved in our Great Ponds and that about
1/3 are harvested each year, the harvest from about 40 square meters compensates for a
single person’s waste nitrogen. An acre would compensate For the nitrogen load from 100
people The watershed of Edgartown Great Pond includes over 900 residences. If we
assume 3 people par residence, about 27 acres of highly productive oyster beds could offset
the nitrogen from their wastewater.

It seems clear that growing shellfish in the south shore great ponds can ploy a significant part
in improving their water quality. How do we encourage this?

The first hurdle to be overcome is the oyster disease known as dermo. This disease began in
the Gulf of Mexico in the 1940’s and has spread up the east coast. Infected oysters grow
slower and have less reproductive capacity. When heavily infected, they die. It has been
shown that the oysters in Edgartown Great Pond have developed some resistance in the
decade plus that the disease has been active in the Pond. The population of disease resistant
animals needs protection so they can spawn to populate the Pond with offspring that are even
more resistant. This is underway now.

The oyster spat need suitable hard bottom to set on, either in the form of shell or rocks and
cobble, Much of the oyster shell harvested over the years was not returned to the Pond. The
excess growth of aquatic plants has smothered some of the hard bottom with decaying plant
material. The Shellfish Department has been dumping shell into the Pond for some years in
on effort to establish suitable sites for oyster growth.

Once resistant animals are available, a significant population needs to be established either
by aquaculture or by natural population increase. The services of the oysters, once
established, are free and the harvest is a bonus. They can play a role in improving water



quality in Edgartown Great Pond, Oyster Pond, Tisbuiy Great Pond, Chilmark Pond,
Squibnocket Pond and James Pond.

The idea of increasing oyster farming to offset nitrogen loads by setting up a nitrogen rights
trading program has been suggested (Golen, 2009). In this approach, a developer in the
watershed of a nitrogen sensitive pond system would offset project nitrogen loads by
purchasing the loading compensation from a shellfish farm that would increase their
production accordingly.
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Executive Summary
Nutrient loading is one of the most important agents of adverse ecological change in
coastal ecosystems. Most efforts to address nutrient overenrichment problems have
focused on source reduction of nutrient inputs. This tends to be difficult and expensive,
as the main nutrient sources — septic systems, atmospheric deposition, and fertilizers —

cannot be reduced without significant technological or behavioral change. in certain
cases, it may be equally effective and less costly tom tigate the effects of nutrients after
they have entered the water. One such approach involves removing nutrients and
improving water quality in estuaries by using bivalve molluscs as natural biofilters.

Evidence from this project and from prior research suggests that the propagation and
harvesting of bivalve molluscs can be a viable method for removing nitrogen from
estuaries and improving coastal water quality. Shellfish sequester nitrogen in body
tissues, and shellfish harvesting can remove a substantial amount of nitrogen directly
from coastal waters. In addition, empirical and theoretical work indicates that filter
feeders (including bivalve molluscs) can act as a control on algae by grazing off
phytoplankton at high rates, thereby reducing the likelihood of algal blooms under
increased nutrient enrichment. Finally, laboratory and field studies of benthic filter
feeders have shown that shellfish greatly influence nitrogen transformations in aquatic
systems. Filter-feeding shellfish produce biodeposits, the presence of which in sediments
can increase the rate of denitrification --the conversion of biologically active nitrogen
(N03) into elemental nitrogen (N2) that diffuses to the atmosphere.

In 2004 and 2005, we conducted a field experiment to investigate the nutrient-removing
effects of shellfish aquaculture and harvesting in Waquoit Bay on Cape Cod. The Bay
suffers from high nutrient levels, periodic hypoxia, declining seagrass beds, and



overgrowth of macroalgae; and removing nitrogen from the water column would likely
help alleviate this situation and assist the recovery of some of the damaged habitats.
Waquoit Bay as a whole presently receives more than 23,000 kg of nitrogen per year
from wastewater (about 50%), atmospheric deposition (30%), fertilizer runoff, and
surface flows from upgradient ponds. This is more than twice the rate of nitrogen input
the Bay received in the I 930s. The increase has been correlated with development and
population growth, and is the primary cause of algal blooms that have become a regular
feature of Waquoit Bay.

This project examined the nutrient-removal characteristics ofjuvenile oysters
(Crassostrea virginica) and quahogs (hard clams, Mercenaria mercenaria).
Our field work shows that both oysters and clams can be grown successfully in the waters
of Waquoit Bay. Clams are native to the sediments of the Bay; oysters require a
substrate, such as plastic growout trays, since the seafloor in the Bay is devoid of hard
structures suitable for oyster settlement. We found that oysters grow from seed to market
size in the Bay in three years. Based on our growout experiments, a I m2 tray containing
500 oysters will, over the course of three years, remove an average of 0.1 kg N/yr
through sequestration and up to 0.1 kg N/yr through increased denitrification in
sediments underneath the tray.

Shellfish aquaculture is a profitable commercial activity, and as such it is has a lower
direct cost than upstream nitrogen removal alternatives. However, oyster farming
imposes two types of indirect costs that must be taken into consideration: (I) it requires
exclusive allocation of space in the Bay to the aquaculture activity, reducing the value of
the Bay for recreational purposes; and (2) because the farming gear (trays, etc.) is at least
partially exposed at lower tides, it also imposes aesthetic costs on residents and users of
the Bay. From society’s perspective, these costs are partially offset by the excess value
generated by the commercial shellfish farming activity.

The net benefit (NB) of shellfish aquaculture is therefore a function of the area within the
Bay that is devoted to shellfish aquaculture (SC), and is given by:

NB(SC)=NR+PS-AC RC

where NR is the value of nitrogen removal due to aquaculture, PS is the economic benefit
of the farming activity (producer surplus), AC is the aesthetic cost imposed by the
presence of shellfish farming gear in the Bay, and RC is the cost associated with reduced
recreational use of the Bay.

In determining the optimal mix of measures to achieve a specified reduction in nitrogen
loading, economics suggest that managers should make use of the least-cost measures
first. In this case, then, the question is at what scale (SCmax) of shellfish aquaculture in
the Bay the net benefit of this activity becomes negative. The optimal approach to
nitrogen reduction will rely on shellfish aquaculture up to SCmax, if necessary, and engage
other more expensive alternatives only as necessary beyond that point.



To illustrate this approach, we consider as an example the region of Waquoit Bay known
as “Head of the Bay,” where our growout experiments took place. The Head of the Bay
is some 57 ha in size and presently receives about 500 kg of nitrogen/year, or 275 kg year
above the levels estimated to have entered this part of the Bay during the I 930s.

As a proxy for the benefit of nitrogen removal through shellfish aquaculture, we use the
avoided cost of upstream removal by other means (e.g. improved septic systems, an
estimated cost of$ 100/house year). We estimate producer surplus at 20% of sales for the
shellfish farmer. Aesthetic costs are modeled as an increasing (square) function of the
fraction of the Bay devoted to shellfish farming, and are based on the premium in real
estate value associated with waterfront property on the Bay. Recreational costs are a
linear function of area devoted to shellfish farming, and are based on annual user days
and value per user day for the Bay.

The results are illustrated in Figure I below. Benefits increase linearly with area devoted
to shellfish farming and flatten out when the nitrogen removal target (in this case, the net
increase in loading since the I 930s, or about 275 kg N yr) is reached. Indirect costs rise
with area devoted to shellfish farming. Shellfish farming makes economic sense, from a
social planner’s perspective, up to SCn,ax, beyond which total costs exceed total benefits
in this case, about 2.5% of the region in question.
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Figure I: Estimated total benefit and total cost associated with oyster culture in the Head of the Bay region
of Waquoit Bay. Cape Cod, Massachusetts.

Under these assumptions, then, it would be feasible and economically sound to devote
about 1.5% of the Head of the Bay area. fZ~— 3~ay to shellfish culture, thereby



removing annually an amount of nitrogen equal to the increase in N loading this area has
experienced since the l930s. Based on these results, we conclude that shellfish farming
can make a substantial contribution to the management of nutrient levels in coastal waters
in settings like Waquoit Bay.
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Abstract. Many of the world’s coastal ecosystems are impacted by multiple stressors each
of which may be subject to different management strategies that may have overlapping or even
conflicting objectives, consequently, management results may be indirect and difficult to
predict or observe. We developed a network simulation model intended specifically to examine
ecosystem-level responses to management and applied this model to a comparison of nutrient
load reduction and restoration of highly reduced stocks of bivalve suspension feeders (eastern
oyster, Crassostrea virginica) in an estuarine ecosystem (chesapeake Bay, USA). Model results
suggest that a 50% reduction in nutrient inputs from the watershed will result in lower
phytoplankton production in the spring and reduced delivery of organic material to the
benthos that will limit spring and summer pelagic secondary production. The model predicts
that low levels of oyster restoration will have no effect in the spring but does result in a
reduction in phytoplankton standing stocks in the summer. Both actions have a negative effect
on pelagic secondary production, but the predicted effect of oyster restoration is larger. The
lower effect of oysters on phytoplankton is due to size-based differences in filtration efficiency
and seasonality that result in maximum top-down grazer control of oysters at a time when the
phytoplankton is already subject to heavy grazing. These results suggest that oyster
restoration must be achieved at levels as much as 25-Cold present biomass to have a
meaningful effect on phytoplankton biomass and as much as 50-fold to achieve effects similar
to a 50% nutrient load reduction. The unintended effect of oyster restoration at these levels on
other consumers represents a trade-off to the desired effect of reversing eutrophication.

Ke;’ i’ords ecosl’ste,n; eut~’opI,ication; food web; modeling; oyster; restoration.

INTRODUCTION

Natural resource management in aquatic ecosystems
is shifting from an emphasis on individual problems
towards a more adaptive and sustainable paradigm of
restoring and conserving ecosystem services (National
Marine Fisheries Service 1999, Ptacnik et al. 2005). This
paradigm more strongly integrates management with
spatial and temporal patterns in ecosystem structure,
but it also brings new challenges for defining clear
management targets and benchmarks that are inclusive
of a broad range of environmental issues. In particular,
interest in ecosystem-based approaches to management
of highly impacted coastal ecosystems has increased with
a growing recognition of the overlapping goals and
approaches of living resource restoration, improving
water quality, and fisheries management.

cultural eutrophication has increased in coastal and
estuarine systems over the last 50 years, resulting in

Manuscript received 22 October 2008: revised 12 August
2009: accepted 3 August 2009. Corresponding Editor (ad hoc):
R. R. Christian.
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declining water quality and shifts from benthic-domi
nated to pelagic-dominated primary production in many
estuaries throughout the world (Nixon 1995, Cloern
200!, Kemp et al. 2005). Efforts to reduce or reverse this
trend have generally focused on reducing the input of
new nutrients and organic material (Jordan et al. 2003,
Fear e al. 2004, Neumann and Schemewski 2005).
Overfishing, disease, and habitat degradation have
greatly reduced biomass of bivalve suspension feeders,
especially oysters, in some of the same systems prior to
major increases in anthropogenic nutrient loading
(Mackenzie et al. 1997). Restoration of important
bivalve species is a management objective in many
systems for rebuilding important commercial fisheries
and to restore healthy benthic habitat that increases the
transfer of benthic secondary production to pelagic
consumers (Coen et al. 1999, 2007). Increased abun
dances of bivalve suspension feeders may also redu~
concentrations of phytoplankton and other suspended
particulates, allowing a return to higher rates of benthic
primary production (Newell and Ott 1998, Nakamura
and Kerciku 2000, Cressman et al. 2003). Restoration
bentliic susp~sion-feeder biomass has theta—
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proffered as a potentially iniportant supplement to
nutrient reduction strategies to reverse culLural eutro
phication (Officer et al. 1982, Newell et al. 2005).

Reducing nutrient loads and restoring benthic sus
pension-feeder populations both have the potential to
decrease phytoplankton biomass in the water column
and can be considered complementary management
strategies. However, both actions are likely to have
substantial direct and indirect effects on trophic
structure that can be difficult to predict. Reductions in
nutrient loads should reduce the specific rate of pelagic
primary production (Neumann and Schemewski 2005),
and increases in total benthic filtration should reduce
phytoplankton standing stocks, both of which reduce
suspended particulates and provide more light penetra
tion to support benthic primary producers (Newell
2004). The efficacy of top-down control of phytoplank
ton biomass and increases in bentliic primary produc
tion have been demonstrated in freshwater systems both
with and without nutrient enrichment (Carpenter et al.
1995, 2001). Yet, effects on phytoplankton specific
production rate (i.e., bottom-up) and effects on phyto
plankton biomass (i.e., top-down) may have very
different influences on energy flow through food webs
due to potential differences in how these two pathways
impact other consumers. A model-based examination of
synergistic outcomes of oyster restoration and nutrient
load reductions is, therefore, a useful approach for
comparing and contrasting the effects of these two
potential management actions.

Chesapeake Bay, located on the U.S. Atlantic coast,
has experienced a long history of cultural eutrophication
resulting in increased phytoplankton biomass (Kemp et
al. 2005), decreased water clarity (Gallegos 2001),
increased severity and extent of seasonal hypoxia
(Breitburg 1990, Boicourt 1992, Hagy et al. 2004), and
decreased biomass of submerged aquatic vegetation
(Kemp et al. 1983, Orth and Moore 1983, Orth et al.
2002). Chesapeake Bay has also been subjected to direct
impacts on its living resources. In particular, the
abundance of eastern oysters (Crassostrea i’irginka)
has declined dramatically as a result of overharvesting,
disease, and siltation of oyster reef habitat (Jordan et al.
2002).

Recognition of these problems has led to an extensive
effort to reduce the delivery of nutrients into
Chesapeake Bay (Correll et al. 1999, 2000, Jordan et
al. 2003) as well as research and public interest in oyster
restorattion (Brumbaugh et al. 2000, National Research
Council 2004, Newell et al. 2005). Prior to commercial
exploitation, the oyster population in Chesapeake Bay
was two to three orders of magnitude higher than its
present levels (Newell 1988, Jordan and Coakley 2004).
The intense filtration activity associated with this large
oyster population is thought to have made a major
contribution to the control of phytoplankton abundance
under historic conditions of nutrient and sediment
delivery (Newell 1988, Newell and Ott 1998). If these
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historical abundances of oysters were still present, they
might have made Chesapeake Bay more resilient to
anthropogenic nutrient inputs (Carpenter et al. 1995,
Newell et al. 2005). Increased oyster biomass has also
been associated with increased benthic secondary
production (Coen et al. 1999, Luckenbach et al. 2005,
Rodney and Paynter 2006), alteration of nutrient
recycling rates (Newell et al. 2005), decreased pelagic
primary production (Cloern 1982, Officer et al. 1982,
Dame 1996, Souchu et al. 2001), and increased
reproductive success of the sea nettle, Chrysaora
quinquecvrrha (Breitburg and Fulford 2006).

Trophic network modeling provides a powerful tool
for examining the direct and indirect effects of multiple
management actions. Previous examination of trophic
effects of increasing oyster biomass in Chesapeake Bay
utilizing a network model suggested that increased
oyster biomass will result in decreased phytoplankton
biomass, increased benthic primary production, de
creased biomass of gelatinous zooplankton, and in
creased biomass of both forage fishes and top carnivores
(Ulanowicz and Tuttle 1992). However, Ulanowicz and
Tuttle (1992) did not address seasonality, foraging
efficiency, consumer diet flexibility, or increases in
benthic habitat in their analysis, and considered only a
2.5-fold change in oyster density.

We developed a trophic network simulation model
intended to capture important features of the benthic
pelagic food web of Chesapeake Bay and extend
previous examinations of the effects of increasing oyster
biomass and decreasing nutrient inputs on energy flow
We focus primarily on the pelagic food web of a
composite of representative tributaries in the discussion
of model results because oyster feeding is tightly coupled
to the pelagic food web and to highlight potential effects
of oyster restoration on important consumer species.
Our trophic simulation model (TroSim) was designed to
capture the effects of seasonality of production, size-
selective filtration efficiency, and diet flexibility of
consumers but it does not explicitly consider other
processes such as hydrodynamic factors, changes in
nutrient recycling rates, or hypoxia.

Our objectives were to (I) forecast the potential net
effect of oyster reef restoration on the pelagic food web
under a range of potential changes in oyster biomass, (2)
contrast the effects of oyster restoration to those
predicted for a reduction in nutrient loads in our
reference system, and (3) evaluate oyster restoration as
an ecosystem management tool.

M ETHODS

Model structure

The trophic simulation model (TroSim) we developed
was based on an existing general mass-balance simula
tion model designed for toxicological risk assessment
(CASM-COASTES; Bartell et al. 1999, Bartell 2003).
The original model framework, as described by Eqs. 1 3
below, was adapted into TroSim, which provides more

RICHARD S. FULFORD ET AL
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flexibility in model response to changes in food web
structure and allows for model perturbation at multiple
Irophic levels. Primary modifications of the CASM
framework were inclusion of more explicit linkages
between detrital pools, a prey refuge term (sensu
Walters and Juanes 1993), inclusion of non-trophic
links among functional groups (e.g., nauplii are a link
between meso- and microzooplankton), and adaptation
of the model to a shorter time step. Details are given on
these adaptations below. Additional details of model
structure are in Appendix A. TroSim is well suited for
comparing and contrasting the effects of disparate
management strategies on ecosystem structure. Food
web interactions are simulated, while the role of oysters
in creating reef habitat for ecologically important
species is built into model assumptions.

TroSim is a carbon budget model that operates on a
0.1-day time step to describe carbon transfer between
trophic groups based on the energetic needs of
producers and consumers (Fig. I) and dietary prefer
ences. Producer and consumer functional groups are
defined based on tractable levels of taxonomic specificity
(Tables I and 2).

The daily change in biomass (Ba, g C/rn3) for producer
group j was calculated as the difference between total
daily production of producer] on day I ~ g C d) and
losses due to respiration (Rj, d’), sinking (5], d’), non
predatory mortality (i.e., senescence; rn1, d 3) and
predation by consumers (Pr5):

= x (Prnax X[fQ) )< gQ) x n(d)1”~ x[l — R1])

Total daily production is the product of a producer-
group-specific rate of maximum daily production (Pmax,
g Cg C’d 1) and the geometric mean of control
factors for temperature (f(s), t = daily temperature, °C),
light availability (g(i), 1= daily surface light level, [tmol
m2), and nutrient availability (n(d~), d,, daily concen
tration of nutrient p. mg L).

The daily change in biomass (B, g C m’) for
consumer group j was calculated as the difference
between total daily ingestion (I, g Cd) and daily losses
due to costs of metabolism (R1), consumption (SDA),
waste production (Uj), reproduction (Rp), losses due to
non-predatory mortality (m), and total daily consump
tion of consumer I by other consumers (Pr):

&81/81=ijx(I —[SDA+UD—R1—Rp, m —Pr1.

Daily ingestion is based on an estimate of maximum
daily consumption (Cmax, g Cg C’-d ‘) adjusted for
water temperature (/(s) r = daily water temperature, °C)
and multiplied by consumer biomass (Bj~) to calculate
total consumption for consumer/ on day i. Temperature
adjustments were specific for each trophic group and
based on the dominant species as a function of biomass
(Table 2). Maxie——~— - rnn~iimptjon by oy was

based on a maximum filtration rate (0.55 m3-g C d 1;

Newell and Langdon 1996) adjusted for temperature
(Fulford et al. 2007) and converted to daily consump
tion by multiplying filtration rate by total prey biomass.

Temperature-adjusted maximum consumption for
consumer group j was then allocated to ingestion of
each prey group k based on prey group biomass (Ba
and BaJ, consumer- and prey-specific parameters for
preference (iI’j&), assimilation efficiency (aik), and
handling efficiency (hej&4:

k=I ZBavXwjc . 3

TroSim uses Ivlev’s electivity index (Paloheimo 1979) to
calculate prey preference and the amount of daily
consumption allocated to each prey group was normal
ized by the preference weighted total biomass of all prey.

Fittics tonal groups

Producers groups. Phytoplankton was separated by
equivalent spherical diameter (ESD) into six functional
groups (Table I). We used size categories rather than
taxonomic groupings for phytoplankton because diet
composition of suspension feeding organisms in which
we were most interested (i.e., eastern oysters and
menhaden) is primarily determined by size-based reten
tion efficiency of prey (Newell and Langdon 1996).
Analysis of phytoplankton data for Chesapeake Bay
suggests that except for picoplankton the relative
biomass of phytoplankton size categories changes
minimally within each season despite large changes in
the taxonomic composition (Fulford et al. 2007). Other
historically important primary producers such as sub
merged aquatic vegetation and microphytobenthos were
not included in the model because their current
contribution to primary production is minor and there
are no data on the trajectory of response of these groups
to oyster restoration effects. This simplifying assump
tion will he further addressed in the discussion.

Phytoplankton biomass (g C m’) was calculated by
converting total chlorophyll a (chl a; ~tg L) to carbon (40
g C:g chl a; Gallegos 2001). Monthly estimates of total
chl a were calculated from monitoring data collected in
the Bay from 1986 to 2002 (Chesapeake Bay Program
Omce, Annapolis, Maryland; data available online).’
Biomass data were used to define initial biomass for

(2) each phytoplankton size group on model day I (I
January) and monthly mean hioniass for each size group
for model validation. This model validation approach
was used for all functional groups. Production and
metabolic cost data for each phytoplankton size class
were based on allometric rates from the literature and
adjusted within the range of data variability to fit the

s Pr (I)

6 (http: wwwsbesaj~..1.-Lay.net data_plankton.aspx
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observed seasonal trend for each size group (Banse 1982,
Tang 1995).

Consuuwr groups. Consumer functional groups
were included in six ecological categories: zooplank
ton, gelatinous zooplankton, pelagic forage fishes,
benthic invertebrates, benthic omnivorous fishes, and
larval sub-pools. The number of functional groups in

each category varied from one to three (Table 2).
Microbial dynamics were not explicitly modeled bul
are included in the form of temperature-mediated
functions of the catabolism of particulate and dis
solved carbon. Unless otherwise stated biomass data
for all consumer groups was estimated from monitor
ing data as described for phytoplankion (Chesapeake

Tuwi I. Group-specific model input parameters for producer groups I.

D1 Pnmx
~o T0~, T0, (pmol (g Cg s K,(P) K,(N) atl~ I?,

(g C m1) (°C) ( C) in2) C ‘d ‘) (d (pg P L) (pg N L) (d ‘) (d ‘)

Phyloplankton size
tOO pm 1.20 10 1 10 145 100 0.81 0.01 3.5 35 0.1 0.05

50 100 pm 2.20 10 2 10 145 100 .00 0.01 3.5 35 0.1 0.05
tO 49 pm 2.20 10 - 10 145 100 1.11 0.01 3.5 35 0.1 0.05
4 9.9 pin 2.20 10 - 10 14.5 100 1.29 0.001 3.5 35 0.1 020
2 3.9 pm 1.70 10 10 14.5 80 1.42 0.001 3.5 35 0.1 0.40

2 pin 400 24 34 80 1,71 0.001 3.5 35 0.1 0.40

Votes: Parameters are initial values of group biomass (B~~), optimal ( T,,01) and maximum ( T,,~,j temperature of production, light
saturalion of?iudLicllon (D,~, maximum production rate (P,~,J. sinking rate (s,), half—saturation constants (K,, ~) for phosphorus
(fland nixr~ INk non-nredatorv mortality rate (nit), ant] .mflsiboiic costs of production (Rj).

Pelagic prey fish
Ancboa
nslclgw

&evoorlla
tyrannus

Oyster larvae

Anchovy larvae

Ctenophore larvae

Zooplankton

Phytoplanklon

Gelatinous
zooplanklon

CMatEa tansa

Microzooplanlcton

Pelagic bacteria

Chrysaora
quinquecin’ha

Mnemiopsis
leidyl

*<2 pm

2—4 urn

4—10 pm

lO—5Opm

50—iDa pin

>100 pin

Non-reef fish

Reef-associated
fish

_______I Ber

virginica inverts

Off-reel inverts

nr~,. Benthic bacteria

N P Si
Caaa

Detritus poo a

Fx;. I. Network diagram describing carbon low between functional groups for the trophic simulation model (TroSiin)
paraineterized for Chesapeake Bay Abbreviations are: DOC, dissolved organic carbon, POC. particu ate organic carbon: HNAN,
heterotrophic nanotlagellates.
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T,uiii 2. Group-specihc model input parameters for consumer groups.

C,~,,
B~ Top~ Turn, (g C~g SDA 7~, (g Cg R~,a U in Threshold

Functional groups (g C m3) ~°C) (‘C) C’d ‘) (d ‘) (‘C) C ‘cr’) (d ‘) (d ‘) (d ‘) (g C m3)

Zooplanlcton
Mesozooplankton 8.00 x 10 “ II 15 1.6 0.16 47 3.00 0.1 0.02 0.001
Microzooplankton 1.20 X 10 25 42 1.5 0 28 0.30 0 0.02 0.01
1-INAN 4.00 x 10 ‘ 25 40 1.3 0 40 0.78 0 0.04 0.05

Gelatinous zooplankton
Mneiniapsis leidri 5.40 X JO 22 37 0.6 0 31 0.15 0.005 0.041 0.03
Chr;’stwra quinquecirrha 1.00 X 10 ‘ 22 30 0.9 0 30 0.1 0 0.04 0.05

Pelagic omnivorous fish
Brevoorria lyrannus 7.30 X 10 2 28 36 1.3 0.17 33 0.002 0.005 0.1 0.005 5.00 X 10
Anchoa ,nitdiilli 3.00 x 0 2 27 35 0.4! 0.10 30 0.018 0.005 0.15 0.006 6.00 X 0 2

Benthic invertebrates
On-reef invertebrates 5.00 X 10 2 30 50 0.08 0 45 0.08 0 0.3 0.001
Off-reef invertebrates 7.40 X 10 30 50 0.08 0 45 0.08 0 0.3 0.001
C’rassosirea virginka 4.10 X 10 2 27 34 0.55 0.2 27 0.015 0.015 0.015 0.001

Benthic fish
Reel-associated fish 1.30 X 10 2 27 34 0.15 0.1 29 0.034 0.001 0.1 0.002 3.60 10
Nonreef fish 5.40 X 10 ‘ 27 34 0.3 0.1 29 0.03 0 0.06 0.001 1.20 10

Larval pools
lid. left/i’! larvae 0 25 35 0.7 0 25 0 0 0.025 0.07
A. nifle/ijIll larvae 0 25 35 0.7 0 25 0 0 0.025 0.05
C. i’frginka larvae 0 25 35 0.7 0 25 0 0 0.025 0.!

No!ac: The parameters are initial values of group biomass ~ optimal (T,,~,) and maximal (7’,,,,) temperature of consumption.
maximum consumption rate (Cn,a,). metabolic costs of consumption (SDA), optimal temperature of respiration (T,.0,~), maximum
respiration rate (R,n,j, metabolic costs of producing reproductive tissue (e.g., egg biomass, R0,a), loses to excretion (U), non-
predatory mortality (in), and the forage fish surplus production threshold. The abbreviation HNAN stands for heterotrophic
nanoAagellates.

Bay Monitoring Program [CBMP]; Stations LEI.I,
ET5.2; data available online).7

The zooplankton category included two functional
groups intended to represent meso- (≥200 ~m, e.g.,
Acar!ia jousts) and micro- (<200 ~tm, e.g., rotifers,
nauplii) zooplankton (Kimmel and Roman 2004).
Meso- and microzooplankton groups were linked by a
naupliar production term (Rp,; Eq. 2) and a naupliar
maturation term (5% microzooplankton biomass d;
model day 100 270). Gelatinous zooplankton were
divided into two functional groups: ctenophores
(Mnemiopsis leidyi) and scyphomedusan jellyfish
(Chrysaora quinqueLirrlia). Both species are important
pelagic consumers in summer (Purcell et al. l994b).

Pelagic forage fish were represented by two functional
groups: zooplanktivores (Auchoa snirchilli) and suspen
sion feeding herbivores (Bit pooi-rio tyrannus). Ant/wa
,nitchilli are the most abundant prey fish in the Bay (Jung
and Koude 2004). Monthly mean biomass for A. mitchilli
was based on data collected in 1995 and 2000 in the
mainstem Chesapeake Bay (Wang and Koude 1994,
1995, Jung and Houde 2004) and in 2004 in the Patuxent
River (Miller 2004). Seasonal movement of anchovy in
and out of the system was simulated by adjusting the
production surplus term to reflect a higher observed

biomass in the late summer and fall. There are little
biomass data for B. tyranmis in Chesapeake Bay and so
we used an annual mean biomass of 0.145 g menhaden C
m3 based on estimates of 1.07 g wet mass m1 from
analyses conducted by the Atlantic States Marine
Fisheries Commission (ASMFC, J. Uphoff, unpublished
data). Seasonal migration of forage fishes was modeled
through adjustments to functional group biomass.
Because a large fraction of the B. tyrannus population
immigrates into the Bay in the spring and emigrates out
in the fall, we set initial (I January) biomass as one-half of
the annual mean biomass and allowed summer maximum
biomass to reach threefold the annual mean. This
approach simulated the trophic effects of seasonal
migration patterns without modeling migration explicitly.

Benthic consumers in the model were separated into
two ecological categories: benthic invertebrates and
benthic omnivorous fishes. Benthic invertebrates were
separated into three functional groups: eastern oysters
that live in dense aggregations termed oyster reefs, other
invertebrates associated with oyster reefs, and off-reef
invertebrates. Benthic omnivorous fishes were separated
functionally into species that are residents of oyster reefs
and those that are not. Fishes that are reef transients
were accommodated in the model by including prey
items on oyster reefs in the diet of both functional
groups. The mean biomass of C. I’irginica was obtainedhttp: www.chesapealcebay.net dataandtools.aspx



from the Chesapeake Bay Oyster Population Estimation
(CBOPE) project (data available oitline))<

Other invertebrates in the model were separated into
on-oyster-reef and off-oyster-reef groups to differentiate
between those associated and not associated with reefs.
Both groups were modeled to represent a mix of
suspension-feeders, deposit feeders, and carnivores.
The diet of each composite group was partitioned based
on 1-lagy (2002); the on-reef assemblage was assumed to
be trophically equivalent to the off-reef assemblage.
Biomass for the on-reef group was calculated as a fixed
proportion of oyster biomass per unit area, and was
based on data comparing the biomass of oysters to the
biomass of other reef invertebrates on experimental reefs
in Virginia (Luckenbach et al. 2005). The target for on-
reef invertebrate summer biomass was 4.5 times oyster
biomass in the model.

Reef resident fishes were based on data for Gobiosoma
hosc, which is the most abundant reef resident fish in
mesohaline Chesapeake Bay (Breitburg et al. 1995).
Biomass estimates for G. base were based on the
relationship for reef fish biomass in the summer being
1.9 times oyster biomass (Abbe 1992, Breitburg et al.
1995, Harding and Mann 1999). Demersal non-reef and
reef-transient fishes were described using the energetics
of spot (Leiostomus xanthurus, Moser and Hettler 1989),
an abundant dcmersal, bentliic-feeding fish in
Chesapeake Bay (Wang and Houde 1995, Murdy et al.
1997). Initial biomass of non-reef demersal fishes was set
to 18% of A. miichilh biomass based on simultaneous
Baywide estimates of biomass for both demersal fish
species and A. milehilli (Jung 2002). The relationship
between the target biomass for non-reef demersal fishes
and A. mucl,ilhi was used only to set initial biomass and
no special relationship between these two groups existed
in model simulations.

Production surplus fbi fbi-age fish. Top piscivores
were not included as a trophic group in the TroSim
model in order to maintain a focus on the middle and
bottom of the food web, and to eliminate the need to
explicitly model other sources of mortality such as
fishing. However, we predicted potential effects of the
modeled rood web on top piscivores indirectly by
estimating the change in their forage base through the
use of a “production surplus” term based on fish groups
explicitly included in the model. A production threshold
was defined for each fish functional group (Table 2) in
the model based on maximum biomass from field data.
At the end of each model day, the amount of biomass
present in the model for each forage fish group was
compared to this group-specific threshold and if biomass
exceeded that threshold, biomass was reduced to the
threshold and the surplus was removed from the model
simulation. Changes in this production surplus can be
used as a comparative tool for estimating the effect of
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food web manipulations on prey available to top
piscivores. The use of a production threshold to simulate
top-down control assumes the influences of higher level
predators on pelagic prey fish is related to prey fish
biomass and as such will he influenced by oyster
restoration. The model does not allow for any compen
satory changes in prey selection by piscivores, so it
cannot be used to directly examine the influence of
differences in prey preferences among top piscivores on
model predictions. This constraint was a necessary
simplification of the model.

Deli-has pools. Particulate organic carbon (POC)
was included in the model as two distinct pools: water
column POC and sediment POC. Contributions to the
POC pools came from consumer waste production and
non-predatory mortality of functional groups. Losses
from the POC pools were consumption by detrital
feeders, microbially mediated breakdown of POC into
dissolved organic carbon (DOC), and particle burial.
The two POC pools were linked by sinking and
resuspension dynamics.

The contribution to the water column POC poo1 from
non-predatory mortality of fishes was limited to 507 of
daily non-predatory mortality within each trophic group
based on the assumption that most large animals require
more time to decompose into POC and in that time a
significant fraction of this dead biomass will be lost to
the system through flushing out of the mesohaline areas,
washing up on shore, or consumption by groups not
considered in this model (e.g., avian and benthic
scavengers).

Particle sinking rates, measured as the proportion
transferred out of the water column per unit time, varied
depending on type. Phytoplankton was modeled to sink
out of the water column using a cell size-dependent
sinking rate (Table I). Fecal material was assumed to sink
from the water column POC pool in only one day
(Beaulieu 2003, Giles and Pilditch 2004, North et al.
2004). For other forms of POC, loss from the water
column POC pool due to sinking was 60°f per day.

Based on physical processes at the sediment interface
(Giles and Pilditch 2004, North et al. 2004) the
resuspension rate of particles was specified as 507 per
day of the available sediment POC. Fecal material was
not considered available for resuspension based on
reported rapid sinking rates for bivalve fecal pellets
(Giles and Pilditch 2004) and their rapid incorporation
into surface sediments (Holyoke 2008). All other POC
was considered available for both consumption and
resuspension for a period of 10 days from its introduction
into the sediment POC pool. POC was lost to the system
after 10 days based on an adaptation of the inverse e
folding model for sediment burial used by North et al.
(2004). This approach was adapted for a difference model
and to account for multiple transport components (e.g.,
flushing and burial) in a single loss term.

Nut,-ient pooh. The daily mean concentrations (mg
L) of nitrogen (N) and phosphorus (P) were input
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parameters based on CBMP data for the mesohaline
portion of the Bay, and were included to set potential
limits to primary production. Monthly mean data
(1993 2003) were converted to a daily trend by random
draws from a normal distribution of nutrient concen
tration with the month-specific mean and variance.

Data for water temperature, total inorganic suspend
ed solids (TISS) and irradiance levels at the water
stirface were obtained from CBMP data (1993 2003)
and input into the model on a daily basis. Total
suspended solids data from the CBMP database include
organic particles and phytoplankton; data were adjusted
to remove these components. Daily trends for all
parameters were calculated as described for nutrients.

Three larval sub-pools were included to deal with one
of two situations: larvae represent an important prey
item (e.g., A. much/ill and C. virginia,) or the seasonal
biomass trend of the adult group was dominated by
recruitment (e.g., M. left/ri). Larval sub-pools all began
on model day one with no biomass, and reproductive
material was added to the pool during a period
appropriate to each group. Larvae consumed prey in
the model according to their bioenergetic needs.
Mortality (ni,, d 1) was calculated and removed daily,
but growth (0, period 1) occurred in a stair-step fashion
at the beginning (Cl, egg to larval growth) and end (02,
larval to adult growth) of the larval period. The length
of the larval period was defined for each larval sub-pool
based on data describing the period when respective
larvae are present in Chesapeake Bay (Purcell et al.
1994a, Kennedy 1996, Grove and Breitburg 2005).
Larval biomass was transferred to the adult pool within
a year for M. leidyi. Because A. ‘nitchilli and C. virgin/ca
have a maturation period from larvae to reproductive
adults that extended beyond single year model simula
tions, larval biomass from these two groups was not
added to the reproductively mature adult pool.

Consumer diet

Consumer diet was modeled based on relative prey
biomass and a set of consumer- and prey-specific
preference parameters. The use of a preference term
rather than fixed diet proportions allowed the consumer
diet to adjust to fit relative abundance of prey. The
measure of prey preference used in this model was
Ivlev’s electivity index adjusted to vary between 0 and I
(Paloheimo 1979). Prey preference for each functional
group was based on literature data (Appendix A). In
cases where a functional group represented a broad
taxonomic assemblage (e.g., benthic invertebrates) the
diet was determined based on the relative proportion of
various trophic groups within the larger functional
group.

Carbon gain from ingested diet was also affected by
assimilation efficiency and handling efficiency terms that
were consumer- and prey-specific. Assimilation efficien
cy included a term that was loss of carbon to the fecal
pool (see s~kdiods: ~tt’groups: Detritus pools)

and handling efficiency was a loss term back to the living
prey pool. The handling efficiency term allowed for
dynamics such as “sloppy feeding” in ctenophorcs and
mesozoopla n k ton.

Model testing and sinnilations

The current analysis was based on data from the
mesohaline portions of two Chesapeake Bay tributaries
(Patuxent and Choptank Rivers). Individual simulations
represented a single year and considered the trophic
impact of oyster restoration on the seasonal dynamics of
production and biomass for each functional group, as
well as on the total spring (March June) and summer
(July September) production for each functional group.
Predictions of the fully pararneterized model were
compared to long-term (1993 2003) abundances and
seasonal trends in functional group biomass calculated
from field data. Minor adjustments were made to model
parameters within the bounds of natural variability,
which reduced the magnitude of differences between
baseline model predictions and field data. When this was
not possible, we sought to understand why the
differences occurred and how they might affect model
predictions.

The fully parameterized model was used to predict
effects on the Chesapeake Bay food web of increased
oyster biomass resulting from restoration. We conduct
ed simulations at “current” (1994) levels of oyster
biomass and 10,25, and 50 times current oyster biomass.
The restoration target for Chesapeake Bay established in
the Chesapeake Bay 2000 agreement (Environmental
Protection Agency 2000) is 10 times current biomass.
Eastern oyster abundances were estimated by Newell
(1988) to be about 1% of the abundances present prior
to major exploitation. Since the mid 1980s, eastern
oyster stocks have continued to decline. Thus, although
these simulated populations may seem large, they do not
come close to historic oyster stocks. This model analysis
addresses effects of oyster restoration in the tributaries
of Chesapeake Bay, which are the most likely sites of
oyster restoration in the Chesapeake Bay ecosystem.
Simulations also have been conducted representing the
niainstem of the Bay; whereas these simulations are not
discussed here, the results are available for comparison
in Appendix C.

Simulated increases in oyster biomass depend on
several key assumptions. First, increases in oyster
hiomass were assumed to represent increases in oyster
density on existing oyster reefs rather than an expansion
of current reef area. As oyster biomass increased in the
model, we therefore modeled a proportionate increase in
reef-associated benthic invertebrates, but no change in
soft-bottom (non-reef-associated) invertebrates. We
assumed a positive linear relationship between oyster
biomass and biomass of reef resident fishes. We also
assumed a positive threshold between increases in oyster
biomass and increases in C. quinquecirrha biomass h~~d
on data indicating a~



9’2

rim associated with the late l980s decline in Maryland
oyster landings (Breitburg and Fulford 2006). Any
increase in oyster biomass ≥l0-fold included up to a 20-
fold increase in the maximum summer biomass for C.
quinquecirrisa. This increase was modeled as an increase
in the density of sea nettle polyps (the life stage thought
to benefit from increased oyster density), but the realized
effect of this increase on biomass of sea nettle medusae
(the life stage that is an important consumer in the
Chesapeake Bay food web) varied as a function of other
trophic interactions. A sensitivity analysis of model
output to these assumptions was conducted by running
the model with each assumption present and removed at
25 times current oyster biomass. The metric of sensitivity
was the proportional change in functional group
seasonal production to an increase in oyster biomass
with an assumption removed from the model. For
instance, if a functional group’s summer production was
reduced by 20% in the full model, but reduced by only
15% with an assumption removed, then the removal of
the asstimption proportionally reduced the influence of
oyster restoration on this functional group by 0.25.

Model results for the various oyster restoration
scenarios were compared to model results predicting
the effect of a 509’ reduction in nutrient loadings from
1994 levels. For nutrient-reduction model simulations,
nutrient concentrations and phytoplankton biomass
were reduced to reflect a 50% reduction in nutrient load
and the associated decline in phytoplankton biomass
predicted by the Chesapeake Bay Water Quality Model
(Cerco and Noel 2005). Water quality model outputs
served as model input for TroSini, which simulated the
effects of phytoplankton reduction on consumers.

There is also some evidence that a 50% reduction in
nutrient load into the Bay and its tributaries will result
in a decrease in benthic habitat impacted by hypoxia
(Hagy 2002, Testa et al. 2008). There is interannual
variation in the bottom area affected by hypoxia; in a
year of severe hypoxia, a seasonal maximum of about
18% of the bottom in the mainstem Bay and mesohaline
portions of tributaries, combined, is overlain by water
<3 mg 02 L. Chesapeake Bay tributaries vary in the
severity and spatial extent of hypoxia, ranging from no
or minimal hypoxia (e.g., the Choptank River) to as
much as 40% (Patuxent) to 60% (Potomac) of the
bottom area in mesohaline waters in a severe year
(Chesapeake Bay Program, unpublished clara). In order
to examine the potential trophic effects of a reduction in
bottom-water hypoxia we ran reduced nutrient load
simulations with and without a hypothesized increase
(13% based on 1-lagy 2002) in bottom area that would
become suitable benthic habitat due to an increase in
bottom layer dissolved oxygen levels.

R es U Li’S

Model validation

The fully parameterized model produced a reasonable
fit to available seasonal biornass trends for most
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functional groups (Appendix B). Model predictions of
functional group monthly mean biomass were within
two standard deviations of the observed monthly mean
biomass with two exceptions. Poorest fits between
baseline model predictions and field data were for
microzooplankton and off-reef benthic invertebrates.
Copepod nauplii dominate the microzooplankton bio
mass in the tributaries from March through April and
from July through September. The observed deviations
between predicted and observed microzooplankton
biomass occurred in February and May and are likely
the result of overestimation of nauplii production for
spring dominant mesozooplankton (i.e., Euryreniora
crffinis) in the model. The influence of model overesti
mation of microzooplankton biomass at the beginning
and end of the spring period is unlikely to affect model
predictions during the primary period of oyster influence
in the summer. Baseline simulations overestimated off-
reef benthic invertebrate biomass during late spring
through fall. This was expected as the model simulates
an un-stratified water column and excludes seasonal
mortality of benthos due to hypoxia, which occurs in the
Patuxent but not the Choptank River. More explicit
incorporation of hypoxic effects in future modeling
efforts may improve predictions of seasonal patterns of
benthic invertebrate biomass but this change will have
minimal effects on our current comparison of pelagic
production.

Effects of oyster i~t’strn-cttk,n

Light penetration and TISS. Increasing oyster bio
mass decreased light attenuation (increased light pene
tration), with largest effects projected from June
through September (Fig. 2a, Table 3). This largely
results from projected declines in mean TISS concen
tration from June to September. The oyster-mediated
reduction of particle concentration and light attenuation
also began earlier for 25- (day 141) and 50-fold (day Ill)
increases resulting in a lengthening of the overall period
of effect as oyster biomass increases.

Primary production. Simulations indicated that in
creasing oyster biomass by 10- to 50-fold would
decrease spring and summer total production (TP;
spring, ordinal day 80 170; summer, ordinal day 171
260) of phytoplankton summed across phytoplankton
size classes, but that the effects would vary among
individual size classes (Fig. 3a, c, Table 3). However, an
increase in TP was indicated for <2-gm picoplankton in
summer, the size class least vulnerable to oyster
filtration. All other size classes experienced either
minimal change (i.e., <5%) or a decrease in TP in both
spring and summer across all levels of oyster biomass
tested (Fig. 3a, c). The 4 10 and 2 4 gm size classes
experienced largest declines, with decreases in the 4 10
ism size class having the most effect on overall
phytoplankton production due to the larger amount of
overall biomass in this category (30 40%). In general,
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Fpu. 2. Predicted seasonal trend in (a) light penetration and (b) phyioplankton bioniass at fotir different levels of oyster
hiotnass restoration or a 50 reduction in nutnent load. Light penetration is measured as the proportion of surface light reaching a
depth of I m.

oysters had the largest effect in the model on phyto
plankton between 2 and 50 itm ESD.

Predicted effects of increased oyster biomass on
phytoplankton biomass were similar to predicted effects
on phytoplankton production (Table 3). Maximum
phytoplankton biomass occurred in model simulations
from April to mid May (Fig. 2b). Increasing oyster
bioniass decreased spring phytoplanlcton biomass by
I 19’ or less at 10- and 25-fold increase in oyster biomass,
hut reduction was 53 at 50-fold. Annual mean biomass
was reduced 5, 8, and 23%. Oysters had an increased
period of effect for a 50-fold increase that resulted in
decreased phytoplankton biomass between April and
August.

Consu,,wr production. Effects of increasing oyster
hion1ass on pelagic constimer production was more
consistently negative than the effects on production of
phytoplankton (Fig. 3b, d, Table 3). The only exception
to this observation was sea nettles, which had a positive
association with the low and moderate increases in

oyster biomass related to the positive habitat effects of
more oyster reef on the polyp stage included in the
model (Breitburg and Fulford 2006). Changes in daily
production for particular consumer groups in response
to increasing oyster biomass were most evident at times
of peak consumer biomass (Figs. 2 and 4).

Total production for microzooplankion and meso
zooplankton in model simulations decreased dramati
cally in response to increasing oyster hiomass in the
summer (Fig. 3b, d, Table 3), especially at 25- and 50-
fold increases in oyster biomass. Predicted reductions in
the spring were negligible except at a 50-fold increase in
oyster biomass, which is related to the grazing effect ot
oysters reaching meaningful levels earlier in the year at
the highest simulated biomass. The effect on zooplank
ton was quite large; predominantly due to the high diet
overlap between oysters and mesozooplankton, strong
interactions between meso- and niierozooplankton, and
the ability of oysters to remove far more phytoplankton
from the water column than they require for niainte—
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TABLL 3. Summary of model-predicted effect of three levels of oyster restoration on total production and biomass of all functional
groups included in the model in simulations of (lie mesohaline section of a representative Chesapeake Bay tributary.

Spring (ordinal days 80—170) Summer (ordinal days 171 260)

Increase in oysters . Increase in oysters
50% nutrient 50~ nutrient

Measure lOx 25X Sax reduction lOx 25x SOX reduction

Total production
Phytoplankton —3 6 —43 23 17 —25 —67 —25
Mesozooplankton —0.5 —0.9 I 65 95 —81 —100 —12
Microzooplankton — I —3 —59 I 71 —89 —100 —10
ill. /eftj~j 59 62 —76 41 13 —28 —94 —16
C. quinquecb’rhat 1400 1400 1400 0 46 17 —83 —13
A. ,nischihi 0 0 —71 0 75 —95 —(00 —

B. Ijrannus —5 —9 —28 9 10 —18 —41 —10
Biolnass/concentration

Light penetration 0.6 1.5 3.5 1.0 2 4 7 0.8
TlSS —0.7 —2.2 5.2 0.0 49 12.6 25.3 0.0
Suspended POC 10 21 —42 14 24 —37 54 9
Phytoplankton —4 II 53 28 26 30 66 17
Mesozooplankton 0 0 I 0 87 —96 100 II
Microzooplankton 2 9 42 82 95 100 5
M.kki;i 2 2 72 8 86 88 98 20
C. quinquecirrhcgt 559800 559800 197100 0 297 156 42 II
A. mm-hUh —0.1 05 26 0 48 60 89
B. ii’rap,n,s 0.! 04 I 0 3 0.3 0.5 1.4 0.3
Benthic fishest4 558 1473 2998 0 56 218 343 0.4

1994 levels of oyster biornass. BiomassNoie.sv All values are given as percentage change from baseline seasonal predictions with
change for forage fish includes reductions in the surplus production tenn. The very large increase in spring production and biomass
of sea nettles in increased oyster scenarios reflects earlier production of ephyra in these simulations to allow sea nettle peak
abundances to reflect increased habitat provided by oysters. Abbreviations are: TISS, total inorganic suspended solids; I’,
particulate organic carbon.

t Production and biomass change includes adjustments related to assumptions about influence of increased oyster bioinass on
this functional group.

Production and biomass change includes adjustments related to assumptions about influence of reduced nutrient loading on
this functional group via decreases in seasonal hypoxia

nance and growth. These important predictions, which
were projected up the food web, are addressed in detail
in Discussion.

Gelatinous zooplankton production was predicted to
have a mixed response to increases in oyster biomass as
a result of the combined effects of the assumption of
increased benthic habitat for the C. quinqueeirrha polyp
stage and the trophic effects of oysters reducing the
zooplankton food source for ctenophores (M. leidvi),
which are the main food source for C. quinquecirrha.
Spring TP of M. ieidyi was predicted to increase in
response to a 10- and 25-fold increase in oyster biomass
but decrease in response to a SO-fold increase (Fig.
3b, d, Table 3). Because spring production for both
gelatinous zooplankton groups was low, these increases
had little effect on biomass. Summer TP of M. /eidyi
decreased with increasing oyster biomass in model
simulations due to the influence of reduced zooplank
ton production and increased predation froni C.
quinquecirrha.

Chrysuora quinquecirrha was allowed to increase as
much as 20-fold from its current maximum summer
biomass and as a result had a large increase in total
spring—summer production, especially at a 10-fold
increase in oyster biomass (Fig. 3h, d, Table 3). Spring
TP for C. quinquecirrha increased~.~.niformIy for all

increases in oyster biomass. Summer TP was predicted
to increase for a 10- and 25-fold increase in oyster
biomass, but decrease in response to a 50-fold increase
in oysters. At the highest simulated oyster biomass
increase, polyp production was counterbalanced by
decreases in medusoid production resulting from re
duced biomass of zooplankton and ctenophore prey. In
general, the model predicted a trade-off between
ctenophore and sea nettle biomass that resulted in lower
than expected changes in biomass of gelatinous zoo-
plankton.

Stmulations generally yielded negative effects of
increased oyster biomass on TP of forage fishes, but
the magnitude of the response differed between the two
fish functional groups in the model (Fig. 3b, d, Table 3).
Spring TP for B. tyrannus was more strongly affected by
oysters than A. mitchilliat 10- and 25-fold increases, but
TP declined greatly for A. mflchilli at 50-fold. Summer
TP for B. tyrannus was lower but followed a similar
trend to that observed in the spring, but summer TP for
A. mitchilli was predicted to decrease 75 100% across
the three levels of oyster biomass. Large predicted
declines in .4. mitchilli production are likely overesti
mated, but this prediction stems from the negative
influence of oysters on zooplankton and the dependence
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of zooplanktivorous fishes on pelagic zooplankton
production.

Daily production surplus (i.e., exported 10 simulate
apical consumption) for all forage fish groups was
reduced by increases in oyster biomass btit the
magnitude of effect differed by fish functional group in
a manner similar to overall production. Daily produc
lion surplus for B. irrcnuius was reduced by 6, 13, and
35% and A. mm-i i/li experienced high percentage surplus
production removal at all levels of oyster hiomass
increase. Benthic fish daily surplus increased 125% for
a 10-fold increase in oyster biomass and then declined
by 61% for both a 25- and 50-fold increase. This initial
increase in benthic fish production was a result of the
large increase in absolute reef fish biomass in the model
which was sufficient to compensate for reduced specific
production at a 10-fold increase in oyster biomass, hut
not at 25- or 50-fold.

Co;smu;ger himucess. Simulations predicted that in
creasing oyster biomass would strongly affect biomass
of meso-, micro-, and gelatinous zooplankton, and
would have varying effects on biomass of the forage
fish groups. Mean spring mesozooplankton bioniass did

not change with increasing oyster biomass, but de
creased 80 100% in the summer (Fig. 4, Table 3).
Microzooplankton biomass decreased less than 10% in
the spring in response to a 10- or 25-fold increase in
oysters but the decline quadrupled at 50-fold (Fig. 4,
Table 3). This again sttggests that the impact of oysters
occurs earlier in the yettr at higher biomass.

Summer mean biomass of Ill. leic/yl decreased by 86
98% in response to both the bottom-up effects of
reduced zooplankton hiomass and the top-down effects
of predation by the modeled increase in sea nettle
hiomass (Table 3). The large ( I 3X) increase in C.
qmmnmquccirrhca peak summer biomass resulting from
increased polyp habitat observed at a 10-fold increase
in oyster biomass was not sustained at larger increases in
oyster biomass and was similar to predicted effects on C.
qumquec’n-rha production.

There were no effects of oyster hiomass increases on
B. m vrcmnus biomass (Fig. 4, Table 3) as the observed
reduction in summer production was small and largely
influenced surpltis production. Daily mean biomass of
.4. m;iimchilli decreased by 55 80 as a direct resttlt of
predicted declines in the two zooplankton pools (Fig. 4).

I

C

lox oyster biomass

~ a 25x oyster biomass 15.5
15.0 .0.2 50x oyster biomass ~ 14.5

£ 0.1 50% reduced nutilent load 14.0
~) ~ 0.0 0.4
~‘.9 0_li

(domt • -=~ 02.c~ 0-2 Ct
°~ 03

~ 0.4 0.0
Oo~ 0.5 .~

tE 0.6
fl 0.7 0.2
~ 0.8 0.

0.9 0.4
1.0

0.3 0.8 d
0.2

jg ~ ;g 04
0,.

C 01 II
Ct 01 ii Ct

Itz
~ 0.2 II .c -~

Ch~ 04 ~ ma
.22 o.s II ~
~ 05 00

. 04o~ 0.8 IL~ 0.7
0. 0.8 0. —0.8

0.9
1.0

I

~ %O 3-c— g,oc~° ~0&:~,sP~dt

Phytoplankton size group (flm)

Fic,. 3. Predicted proportional change in total production in response to three levels ol increase in oyster biomass or a 50%
reduction in total nutrient load br (a. c) phytoplankton and (b, d) consumer functional groups in (a. h) spring and (c. d) summer.
Phytoplankton data are ga en by size class and br a biomass-weighted total across all size classes. Data are the proportional change
Irom predicted total production under 1994 conditions. Abbreviations are: Meso. mesozooplankton: Micro, microzooplankton; 41.
k’mc/i’i_ A1nc~iimcqsf.s Ic’hIi’j, C. quim,.. CIui’scun-c, qumnquec-irrI,ci; B. t’,’wmux; Bmeroorticm !rrwlnu.c: A - witch., Am-hoc, munch/Hi.



S

0)

0Co
Ct
S
0

0
0)
G0
(0
Cu
S
0

RICHARD S. FULFORD ST AL. Ecological Applications
Vol. 20, No. 4

Benthic fish summer biomass Was increased by 56 343%
in response to increased oyster biomass as a result of a
modeled increase in the abundance of reef-associated
fishes and on-reef invertebrate prey. Observed increases
in benthic fish production, particularly at a 50-fold
increase in oyster biomass were likely overestimated as
the influence of summer hypoxia is not includcd in the
model and the relationship between oyster and reef fish
biomass may not be linear. An increase in benthic fish
biomass is, nevertheless, anticipated in response to an
increase in oyster biomass.

Comparison of’ oyster restoration and nulrient reduction

Predicted effects of nutrient reduction on production
and biomass of phytoplankton and various consumers
differed both qualitatively and quantitatively from
effects of increases in oyster biomass. Production of
phytoplankton and all consumer groups declined under
the modeled nutrient reduction scenario. Declines in
phytoplankton production were more consistent across
size categories (Fig. 3a, c), and declines in production of
both producer and consumer groups were more
consistent across seasons than changes in response to
modeled oyster biomass increase (Fig. 3, Table 3).
Output of ike Chesapeake Bay Water Quality Model
(CBWQL; Cerco and Noel 2005) predicted that a 50%
nutrient load reduction would reduce phytoplankion
biomass by a spring summn avtrage of 41°? Oiw
analysis, usios reduced nutrient load as ~ ~ In

generate this reduction in phytoplankton biomass
resulted in a decline in phytoplankton TP of 28% in
the spring and 17% in the summer in the tributaries (Fig
3a, c, Table 3), compared to declines in phytoplankton
TP ranging from 0% to 66°? for the various oyster
restoration scenarios.

Simulations predicted that a 50% reduction in
nutrient load would lead to declines in springtime
consumer TP that were comparable to all but the 50
fold oyster increase (Fig. 3b, d, Table 3). The exceptions
were sea nettles and ctenophores. Sea nettles had a
predicted increase in production for oyster restoration
and a decrease for reduced nutrient load. The pattern for
ctenophores was reversed to that of sea nettles as a
consequence of sea nettle predation on ctenophores.
Declines in summer consumer TP resulting from oyster
biomass increases were always substantially larger than
those due to decreased nutrient load (Fig. 3d, Table 3).
Standing stocks of ctenophores, meso-, and micro
zooplankton followed production and were reduced by
similar amounts by nutrient reduction and a 10-fold
oyster biomass increase (Table 3).

The difference between the projected effects of a
nutrient load reduction and oyster restoration on pelagic
consumers is most evident in the effect on standing
stocks. A 50 reduction in nutrient loads had little
effect on average daily biomasses of zooplankton or bay
anchovy; groups that decreased substantially with
àaeasing oyster biomass (Fig. 4a—c). In general, forage
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fish biomass resulting from nutrient load reductions
remained similar to that resulting from baseline oyster
biomass in the simulated tributary (Table 3). The
hypothesized increase in benthic habitat resulting from
a decrease in the volume of hypoxic water in response to
nutrient reductions yielded no trophic response in
benthic invertebrates in the tributary. As a result there
was also little predicted effect of a 50% reduction in
nutrient load on benthic fishes.

Model sensitivity analysis

Removal of the model assumptions of a 1:1 relation
ship between resident reef fish and oyster biomass
resulted in no appreciable change in spring TP for any
functional group (Fig. 5a). Removal of this assumption
resulted in a 0.8% increase in the effect of oysters on
phytoplankton summer TP and a 6 to 39% increase in
effect on consumer TP. Removal of the 1:1 relationship
between reef-associated invertebrate and oyster biomass
also resulted in minimal changes to estimates of spring
production, but yielded a 15% decrease in the effect of
oysters on phytoplankton summer TP and a 5 19%
decrease in the effect of oysters on consumer summer TP
(Fig. Sb).

Removal of the assumption that increasing oyster
habitat will increase sea nettle polyp production had
strong effects on model predictions regarding gelatinous
zooplankton but minimal effects on any other group.
Late spring production of sea nettles was the primary
driver of increased summer biomass of sea nettles, so a
removal of the assumed increase in sea nettle biomass
had a strong negative impact on sea nettles in the spring,
which resulted in a positive impact on ctenophores in the
summer. Removal of the sea nettle assumption reduced
the effects of oysters on meso- and microzooplankton
by 5%.

DiscussioN

Ecosystem e/jècts of oyster restoration

Restoration of once highly abundant stocks of
suspension-feeding bivalves to estuaries and coastal
waters has been proffered as a method for reducing
some of the adverse effects of cultural eutrophication
(Officer et al. 1982), increasing benthic primary and
secondary production (Newell 2004), decreasing rates of
nutrient regeneration (Newell et a!. 2005), and decreas
ing the severity and extent of seasonal hypoxia (Newell
1988). Yet, the realized effect of oyster restoration on
these factors has been called into question based on the
seasonality and size selectivity of oyster filtration
(Pomeroy et a!. 2006, Fulford et al. 2007), as well as
the spatial separation of nearshore oyster reefs from
open water phytoplankton particularly in larger estuar
ies (Gerritsen et al. 1994). Our findings support the
hypothesis that increased oyster biomass in the tribu
taries of Chesapeake Bay can reduce phytoplankton
~O4t~Z std increase water clarity; however oyster
hinm2ss..nnics ~w increased substantially (25- to 50-fold

Fio. 5. Model sensitivity to assumptions for a 25 Increase
in oyster bioinass. Sensitivity is measured as the difference in
proportional change in total (a) spring and (b) summer
production for the full model compared to a similar model
run with each assumption removed. The three assumptions
tested are an increase in reef-associated invertebrates, increase
in reef-associated fishes, and increase in sea nettles. Key to
abbreviations: Phyto, phytoplankton; all other abbreviations
are as in Fig. 3.

current biomass) to realize meaningful improvement in
these factors. Model results also suggest that increased
oyster biomass will affect the food web horizontally and
this must be considered alongside the beneficial effects of
reversing eutrophication as a part of the overall
ecosystem level response.

Oysters and primary production. Increasing oyster
biomass increased water clarity and decreased phyto
plankton biomass in model simulations, but these
beneficial impacts of oysters were seasonal and varied
with phytoplankton cell size. These limitations largely
narrowed the impact of oysters to the summer months
when primary production is maximized and grazing
pressure is already limiting to phytoplankton bioniass
(Malone 1992), and left the smaller size phytoplankton
largely unaffected by oysters. During the period of
maximum phytoplankton biomass (March May), oyster
filtration in the model was temperature-limited aad’-.øt
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predicted to have an effect on phytoplankton biomass
for any increase less than 50-fold current oyster
biornass. During periods of maximum phytoplankton
production (June September), oysters were predicted to
remove enough phytoplankton from the water column
to affect phytoplankton biomass at all levels of oyster
restoration, but it was only for the 50-fold increase that
total annual production of phytoplankton was reduced
by more than 10%. This seasonal imbalance between
phytoplankton biomass and consumer grazing pressure
was identified by Malone (1992) as a potentially
important factor limiting top-down effects on eutrophi
cation as the sequestration of nutrients resulting from
the spring phytoplankton bloom is thought to provide
an influx of nitrogen important to high summer
production and the formation of hypoxic zones.
Pomeroy et al. (2006) highlighted this seasonal imbal
ance as a key factor limiting the influence of oysters on
summer hypoxia in the mainstem channel. Newell et al.
(2007) pointed out important limitations to the conclu
sions of Pomeroy et al. (2006), but both studies do agree
that grazer control of phytoplankton biomass occurs
largely in the summer, after the incidence of the spring
bloom.

Picoplankton (<2 iim ESD) is retained by oysters
with a very low efficiency (Newell and Langdon 1996).
As a result, our model predicted that with increasing
oyster abundance picoplankton would comprise a small
but increasing proportion of phytoplankton summer
production. Increased picoplankton abundance would
limit the effect of oysters on total primary production
and provide a mechanism for increased horizontal
trophic effects. The relative biomass of picoplankton
typically increases in the summer in Chesapeake Bay
and this trend has increased over the past 30 years
(ICemp et al. 2005), which is a period of decreasing
oyster abundance (Jordan et al. 2002). Picoplankton
have also likely benefited from other changes in the Bay
such as increased nutrient loads that favor phytoplank
ton size classes with the highest turnover rate.

One likely result of an increase in summer water
clarity due to increased oyster filtration not considered
in this analysis is an increased importance of benthic
sources of primary production such as seagrasses and
microphytobenthos. Model results are consistent with
predictions that nutrients sequestered in the sediment
during the late spring die-off of phytoplankton com
bined with increased light penetration would facilitate a
summertime increase in the importance of benthic
primary production.

The overall effect of oysters on pelagic primary
production predicted by the model was an increase in
summer water clarity, and some decline in summer
phytoplankton biomass and production, which suggests
that the eutrophication effect of excess nutrient delivery
to Chesapeake Bay is reduced but not eliminated by
oysters. Inorganic nutrient concentrations in the water
column remain high and one likely result of a decrease in

summer phytoplankton production is additional nutri
ent uptake by benthic primary producers in the summer.
Taken in isolation this shift may be minor due to the
limitations of oyster’s direct effect on phytoplankton in
the summer. However, an additional ecosystem level
impact of oysters is some shift in sources of primary
production along different trophic pathways, and this
shift may act synergistically with horizontal effects of
oysters on other consumers.

Oysters and SL’condarj’ production. Model predic
tions suggest that consumer biomass and production
are more sensitive to oyster restoration than are
phytoplankton biomass and production. This was most
evident for the two zooplankton groups that compete
directly with oysters for phytoplankton. Resource
limitation was manifested as a reduction in specific
consumption by both mesozooplankton and micro
zooplankton as oyster biomass increased, as well as
large decreases of phytoplankton in size classes with
high vulnerability to all three consumer groups (2 10
gm).

The impact of oysters on zooplankton in the model
simulations was due largely to increased consumption of
phytoplankton that was already grazer limited. Yet, the
effect was greater than might be expected as a result of
two important feedback loops we included in the model
foraging flexibility of mesozooplankton and the repro
ductive link between mesozooplankton and microzoo
plankton pools. An intraguild predation relationship
existed in the model between mesozooplankton, micro
zooplankton, and phytoplankton, as mesozooplankton
could prey upon both of the other groups in response to
shifts in relative abundance. This interaction resulted in
a gradual increase in the importance of microzooplank
ton as a prey item for mesozooplankton as oyster
biomass increased due to increased oyster grazing
pressure on phytoplankton. Intraguild predation has
been fotind to ameliorate bottom-up effects in aquatic
food webs (Hart 2002), and two factors make that likely
to be important in this case. First, meso- and micro
zooplankton also have a reproductive link in that
copepod natiplii are included in the microzooplankton

biomass is large in the summer and this reproductive
link yields a larger effect of mesozooplankton on their
own production than would be present if nauplii were
not considered a prey item.

The second and more important factor enhancing the
influence of intraguild predation was a difference
between oysters and zooplankton in prey ingestion
efficiency. Oysters remove far more phyte~~~
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group, resulting in a cannibalism effect as mesozoo
plankton prey more heavily on microzooplankton
Cannibalism has been found to be negatively associated
with phytoplankton density in A. tonsa in laboratory
experiments (Lemus 2006) and has been reported to be
important in natural populations of several Acarik,
species (Uye and Liang 1998, Ara 2001). The relative
importance of nauplii to overall microzooplankton
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biomass from the water column tInLn they require to
meet their energetic needs. The excess organic material is
sequestered in sediments as pseudofeces (Newell and
Langdon 1996). Our model predicts that when phyto
plankton biomass is reduced, mesozooplankton respond
first by shifting consumption to microzooplankton and
then by reducing mesozoopankton daily gross produc
tion, while oysters responded by maintaining near
maximum filtration and producing less pseudofeces.
This difference yields a disproportionate impact on
zooplankton production, which, because of the short
generation time compared with oysters, responds to
reductions in prey biomass at a much shorter time scale.

The validity of these model-based observations
depends on the level of realized overlap in prey resources
between oysters and zooplankton. Complete removal of
zooplankton by oysters in Chesapeake Bay is unlikely
because the plankton pool is not fully accessible to
oysters, which are confined to oyster reefs on the flanks
of the tributaries and the mainstem of the Bay (Smith et
al. 2003). In contrast, zooplankton live throughout the
water column and across the central channel of the Bay
and tributaries. The magnitude of this model prediction
is therefore a result of simplifying assumptions.
Nonetheless, our results suggest that a balance between
consumer groups does exist and the increase in
abundance of a once dominant benthic grazer will result
in reallocation of phytoplankton carbon along different
trophic pathways.

Similar issues have been raised in the examination of
bivalve populations in other systems. Nielsen and Maar
(2007) found that zooplankton populations were signif
icantly smaller over beds of the blue mussel, Mytilus
edit!is, when compared to sandy bottom and they
attributed this to both predation and competitive
interactions between the mussels and zooplankton. A
model-based examination of the effect of oyster culture
on the pelagic food web in Marennes-Oleron Bay,
France revealed a strong competitive interaction be
tween oysters and pelagic consumers that resulted in a
shift in overall secondary production from the water
column to the benthos (Leguerrier et al. 2004).

The influence of oysters on other planktivores in
TroSim simulations was translated up the food chain
and the importance of foraging flexibility in predicting
the ecosystem effects of increased oyster biomass was
demonstrated by the difference in effect on the two
modeled pelagic fish groups. Ostensibly, menhaden
should have been affected similarly to zooplankton
because they also consume phytoplankton. However,
the inclusion of POC as a prey item for menhaden
allowed this consumer group to benefit from phyto
plankton production that had already passed through
other consumer pools (i.e., fecal material). The result is
that the only limitation on menhaden consumption in
the model was sequestration of carbon in the sediment,
and the inclusion of reasonable resuspension dynamics
minimized this limitation for all but the highest increases

in oyster biomass. In contrast, the zooplanktivorous bay
anchovy were limited to mesozooplankton and micro
zooplankton prey and effects of oysters on these two
groups was transferred up the food chain in a linear
manner.

The overall predicted effect in response to varying
levels of oyster biomass increase was a 50 80%
reduction in pelagic prey fish biomass and a 28 190%
increase in benthic fish biomass. The magnitude of
increase in benthic fish biomass is questionable as this
increase is heavily influenced by assumptions regarding
the positive influence of oysters on oyster reef biota, and
the model does not consider the influence of summer
hypoxia. Nonetheless, a positive influence is expected,
particularly in combination with an increase in water
clarity, which should increase benthic primary produc
tion and reduce hypoxic coverage. These model predic
tions support the conclusion that increasing oyster
biomass can facilitate a shift in the relative importance
of benthic and pelagic trophic pathways.

This predicted shift from pelagic to benthic trophic
pathways may extend up the food web to commercially
important apical consumers such as striped bass
(Morone saxalilis), bluefish (Poniaromus saltatrix), and
blue crab (Calilnectes sapidus) to the degree to which
they can directly or indirectly exploit benthic produc
tion. For example, bluefish in Chesapeake Bay are
thought to rely indirectly on benthic production (Baird
and Ulanowicz 1989) and examinations of striped bass
show their diet to be dominated by pelagic fish, but
seasonally flexible, as they feed on benthic invertebrates
when they are abundant (Hartman and Brandt 1995). A
reduction in the dominance of pelagic prey fishes may
not be a significant loss to bluefish or striped bass if they
are able to shift to benthic trophic pathways. Apical fish
consumers were not explicitly included in our TroSim
model. Our conclusions are based on impacts on the
forage fish production surplus and do not consider
possible synergistic effects of top-down control and the
predicted effects of oysters on pelagic prey fishes. The
most important outcome of inclusion of these synergistic
effects would be an explicit examination of trophic effect
of the predicted benthic-pelagic shift in production on
particular consumer species, which would have implica
tions for fishery exploitation. However, apical consumer
influence was considered in the production surplus that
favored benthic fish production at all levels of oyster
biomass increase.

The one pelagic predator that benefited from oyster
biomass increases was sea nettles. Sea nettle numbers
were assumed to increase based on an apparent
temporal association between oyster biomass and sea
nettle abundance over the last twenty years (Breitburg
and Fulford 2006), as well as data showing a strong
affinity of sea nettle polyps for oyster shell as settlement
habitat (Cargo 1979). The influence of this assumption
on trophic dynamics was almost entirely contained
within the gelatinous zooplankton. Total gelatinous



zooplankton biomass declined 30 90% in response to
increased oyster biomass due to high predation of sea
nettles on ctenophores, which are a major prey item.
Both ctenophores and sea nettles prey on mesozoo
plankton but ctenophores have a higher feeding rate, so
the effect of this tradeoff on plankton production was
positive. However, the positive effect of oysters on polyp
densities was ameliorated by reduced medusoid produc
tion at the highest level of oyster biomass resulting from
reduced prey production. Although we did not run
simulations of larger increases in oyster biomass (e.g.,
pre-2Oth-century levels of IOU 1000-fold present day
abundances), our model predictions suggest that high
sea nettle densities in Chesapeake Bay could be
supported at oyster biomass characteristic of the mid-
20th century, but not the much higher oyster biomass
typical of the 19th century and earlier. This conclusion is
consistent with an analysis of historical reports that
suggests sea nettles were far less common in the 19th
century than they are today (Kennedy and Mountford
2001).

Comparison of oyster restoration to nutrient reduction

Predicted effects of a 505” reduction in nutrients on
producer and consumer biomass and production dif
fered qualitatively as well as quantitatively from
predictions of oyster restoration. The most important
difference was seasonal; effects of nutrient reduction
were important in both the spring and summer period
while effects of moderate levels of oyster restoration
were important primarily in the summer. As a result,
annual mean phytoplankton biomass in the nutrient
reduction scenario was predicted to be lower than all but
a 50-fold increase in oyster biomass in the tributary
simulations.

For planktonic consumers and planktivorous forage
fishes, TroSim predicted that a larger and more
consistent dccrease in production and biomass would
result from oyster biomass increases than from reduc
tions in nutrient load. The bottom-up effects of nutrient
load reduction were evident as a reduction in accumu
lated phytoplankton biomass in the summer but the
importance of this reduction to consumers was predicted
to be less than the influence of a summer increase in
grazing pressure. The differences are even more stark
when one considered that oyster impacts on summer
phytoplankton biomass were strongly focused in two
size classes while reductions in phytoplankton produc
tion due to reduced nutrients were fairly even across size
groups. This difference was important to the model
prediction that oyster restoration will have a larger
impact on consumer biomass in comparison to nutrient
load reduction.

Our current simulations are focused on the pelagic
component of the food web and as already discussed do
not hilly consider the potentia~ ~~pensatory effects of
increased benthic primary~ that may result
from both increased IigI~ ~-~—-‘—‘-— —~4 decreased
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hypoxia. These responses may moderate effects of
nutrient reduction on benthos-influenced food web
pathways. However, we did run sensitivity tests in which
biomass of soft-bottom invertebrates was increased, a
likely outcome of decreased hypoxia and increased
microphytobenthos production. These results indicate
that a shift in the forage base for top piscivores to
benthivorous prey resulting from reductions in the
incidence and severity of bottom-water hypoxia would
likely have a minor effect on overall biomass available to
these apical predators. The simulated 13% increase in
benthic habitat increased benthic fish production by 9%,
an increase that was far smaller than the loss of pelagic
fish production resulting from a 50% reduction in
nutrient loadings. The spatial extent of hypoxia varies
greatly among Chesapeake Bay tributaries, but for most
tributaries the potential increase in benthic habitat is
expected to be similar to or less than predicted by our
simulations

TroSim mode! contpie.vity

Tradeoffs between different forms of model complex
ity mean that while TroSim captures the effects of
seasonality of primary production, size-selective filtra
tion efficiency, and diet flexibility of consumers, it does
not explicitly consider important processes such as
hydrodynamic factors, changes in nutrient recycling
rates, or hypoxia. Some extreme predictions of consum
er effect such as the large impact of oysters on
zooplankton and zooplanktivorous fishes are likely
overestimates resulting from a lack of hydrodynamic
complexity.

Spatial separation of consumers and prey resulting
from hydrodynamics and system size are more likely to
confound simulation results for the mainstem of the Bay
(Appendix C) than the tributary simulations we discuss
here. Gerritsen et al. (1994) developed a simple
probability based mixing model and estimates that the
percentage of the stirface mixed layer available to
suspension feeding benthic organisms varied between
16% in the mainstem of Chesapeake Bay to 100% in the
Potomac River (the second largest tributary of
Chesapeake Bay) so the actual influence of hydrody
namics on our predictions in the tributary may be low.
The overall applicability of our model predictions to the
entire Bay will be dependent on how much spatial
complexity matters baywide and how mtich mainstem
trophic dynamics are linked to energy flow in the
tributaries. Most oyster restoration is or is planned to be
in the tributaries and results of this tributary model are
relevant to predicting ecosystem effects of such restora
tion.

Our future goals include linking TroSim simulations
for the mainstem of Chesapeake Bay and the tributaries
together with a hydrodynamics model, which will
produce a more realistic picture of tributary and bay
connectivity. Nonetheless, the seasonal patterns and
comparative results are robust to these simplifying

930 RICHARD S. FULFORD ET AL



June 2010 ECOSYSTEM EFFECTS OF OYSTER RESTORATION 931

assumptions. Predictions from the current model suggest
that effects of oyster restoration on pelagic consumers
are likely to be important, and that there are important
ecological differences between the effects of bivalve
restoration and the effects of reducing nutrient loads as
management actions.

TroSim con iparison w oilier models and model predictions

The effect of bivalves on food web dynamics has been
examined in several systems, however the focus has
largely been on changes in benthic-pelagic coupling and
improvements in water quality (Cloern 1982, Dame
1996, Newell et a!. 2005). These papers frame the debate
about the ecosystem services of bivalves largely without
consideration of effects on other consumers. Two
published models (Ulanowicz and Tuttle 1992, Cerco
and Noel 2005) do directly address oyster restoration in
Chesapeake Bay, and both predicted stronger effects of
increased oyster abundance on reducing phytoplankton
biornass than the current TroSim model. The Cerco and
Noel (2005) model predicted a 6% reduction in annual
mean chlorophyll a concentration for a 10-fold increase
in oyster biomass throughout the northern half of
Chesapeake Bay. Their model does include phytoplank
ton consumption from other consumers, but does not
include a full suite of other grazers. Ulanowicz and
Tuttle (1992) predicted an 11.5% reduction in annual
mean phytoplankton biomass from a 2.5-fold increase in
oyster biomass in the mesohaline mainstem of the Bay in
contrast to our prediction of a 2 23°A reduction in
annual mean biomass from a 10- to 50-fold increase.
The network model analysis of oyster restoration
conducted by Ulanowicz and Tuttle (1992) also deviated
from our predictions in suggesting that oyster restora
tion would have a positive effect on fish production, and
a negative effect on gelatinous zooplankton. Thc
primary difference between this analysis and that of
Ulanowicz and Tuttle (1992) is that our analysis
considered both trophic and habitat effects on consumer
groups and incorporated both realistic seasonality and
diet flexibility. These differences result in the altered
conclusion that oysters may have appreciable effects on
pelagic secondary production that should be considered
when evaluating the effects on water quality and benthic
primary production.

Bivalve restoration as an ecosystem management tool

Model predictions should be viewed in the contcxt of
high nutrient loads and low oyster populations that
currently prevail in Chcsapeake Bay. We do not mean to
imply that recovery to high oyster abundances would
preclude the abundant biota that characterized
Chesapeake Bay prior to substantial fisheries exploita
tion and anthropogenic nutricnt enrichment, but that
pelagic trophic pathways were likely less important then.
In the 19th century, both fish and oyster abundances
were high and nutrient enrichment was relatively low

(Newell 1988), suggesting these conditions are not
mutually exclusive.

In a comparison of estuaries along the U.S. east coast,
Monaco and Ulanowicz (1997) theorized that higher
trophic level fishes are more strongly connected to
bcnthic production in Chesapeake Bay than in other
estuaries due largely to higher dependence on detritus.
In addition, Hartman (1993) used a bioenergetics model
to conclude that weakfish (Cvnoscion regalis), bluefish,
and striped bass all increased their trophic dependence
on benthic prey in the summer and this trend was most
obvious for two-year-old striped bass. These findings
suggest despite the current importance of the pelagic
production in Chesapeake Bay, an increase in the
importance of benthic production to apical consumers
is a feasible response to system alteration.

Chesapeake Bay has been greatly altered by human
activities and our model results support the broadly held
view that oyster restoration alone can not return the Bay
to pristine conditions thought to exist prior to the 20th
century. Yet, oysters have the potential to greatly alter
the Bay food web and the impact of these changes on
fisheries production should be considered. If model
predictions are accurate in direction, if not magnitude,
then exploited fish species that are benthic and or can
exploit benthic prey will benefit from oyster restoration
more than fish species dependent on pelagic prey, and
harvest of these species could benefit from oyster
restoration.

It is apparent that oyster restoration must be achieved
at levels significantly higher than present biomass and
present management targets in Chesapeake Bay to have
a meaningful effect on ecosystem function, including
pelagic primary productivity and biomass (Cerco and
Noel 2005, Fulford et al. 2007). The results of this study
indicate that such large increases in oyster biomass could
strongly alter current pelagic consumer biomass.
Overall, the predicted trophic response of the
Chesapeake Bay system to oyster restoration suggests
that water quality goals represent a trade-off in the
relative importance of pelagic and benthic trophic
pathways. This trade off is further complicated by
deliberate manipulations of present pelagic consumer
biomass via fishing. Understanding such trade-offs are
at the heart of ecosystem-based management and merit
greater scrutiny in the development of management
plans for coastal estuaries.
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